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Abstract 

Increasing concerns on non-sustainable energy use and climate change spur a growing research 
interest in energy efficiency potentials in various critical areas such as industrial production. This 
paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. 
A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are 
technically feasible and have the potential to make a significant contribution to energy saving and 
CO2 emissions reduction, but fall short economically to be included. However, they may also have 
the cost effective potential for significant cost reduction and/or performance improvement in the 
future under learning effects such as ‘learning-by-doing’.  

The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We 
investigated how steel demand is balanced with/without the availability learning curve, compared to a 
Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies 
decline in the scenario where learning curve is applied. The analysis also addresses market penetration 
of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector 
with/without learning impact. Accordingly, the study helps those who use energy models better 
manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better 
understand the market and learning system involved, predict future achievable learning rates more 
accurately, and project future savings via energy-efficiency technologies with presence of learning. 

We conclude from our analysis that, most of the existing energy efficiency technologies that are 
currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through 
the years, even though there is no price reduction. However, demonstration technologies are not 
economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, 
some of the demonstration technologies are adapted in the mid-term and their penetration levels 
increase as the prices go down with learning curve. We also observe large penetration of 225kg 
pulverized coal injection with the presence of learning. 
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Chapter 1 Introduction 

The Inha-Industry Partnership of Inha University, sponsored by the Greenhouse Gas Inventory and 
Research Center of Korea (GIR), commissioned with the International Energy Studies group at 
Lawrence Berkeley National Laboratory (LBNL) to conduct a study that analyzes energy and 
emissions reduction arising from energy efficient technologies applied with technological learning 
factors in the United States (U.S.) iron and steel sector by using LBNL’s Industrial Sector Energy 
Efficiency Model (ISEEM)1.  

This study 

 derives experience curves or learning factors from the U.S. iron and steel industry, 
 incorporates applicable learning parameters into ISEEM, 
 uses the model to create multiple production/efficiency scenarios including the application of 

learning curves,  
 forecasts potential energy savings, impacts on carbon dioxide (CO2) emissions, and overall 

cost savings, 
 and provides insight for improvement modeling for industrial sector. 

An analysis of learning curves for energy efficient technologies in the U.S. iron and steel industry is 
needed for three reasons. 

First, policies to facilitate the adoption of energy efficiency improvement opportunities are necessary 
to correct market failures such as uncaptured economic and environmental benefits from energy 
efficient technologies in the industry. Technological change, also referred to as technological progress, 
plays a fundamental role in the achievement of affordable, efficient and clean production systems. 
Technological change can be seen as a continuous process of replacement and improvement of new 
and existing technologies in the market (Gomez, 2001). New technologies, particularly, have the 
potential to make a significant contribution to reduction in energy consumption, CO2 emissions, and 
overall cost savings in the future. However, even though they are technically feasible, their adoption is 
currently not cost effective relative to current practices. At the same time, they may have significant 
potential for cost reduction and/or performance improvement as experience gained. Thus, rather than 
taking current characteristics of existing and emerging technologies as a given while evaluating 
technologies, technological change should be considered and incorporated into the analysis. Better 
modeling of the introduction and diffusion of new technologies into the market and improvement of 
existing ones are particularly important while doing future projections. Learning was proposed as a 
distinct presentation of technical change in Wright (1936) and Arrow (1962) and is often termed as 

1 ISEEM is a bottom-up, dynamic linear programming model of industrial systems developed by Karali et al. (2012) in 
LBNL. 
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learning by doing. The learning effect is measured in terms of reduction in the unit cost (or price) of a 
product as a function of experience gained from an increase in its cumulative capacity or output 
(Jamasb and Kohler, 2007). The typical representation is through learning, or experience, curves. The 
standard learning curve considers the specific cost of a given technology as a function of cumulative 
capacity or cumulative production, which is used as an approximation for the experience accumulated 
when the technology is deployed. The formulation reflects the fact that some technologies experience 
declining costs as a result of their increasing adoption (Argote and Epple, 1990).  

Second, iron and steel is one of the highest energy and emission intensive industrial sectors, 
accounting for about 5% of total world CO2 emissions (IEA, 2007). The U.S. is the third largest 
steelmaking country in the world with a production of 86.9 Million tonnes (Mtonnes) in 2013 (WSA, 
2014a). The examination of the existing and future energy efficiency potential in this sector helps us 
better understand long-term energy needs and improvement opportunities.  

Third, the literature focused on the role of learning curves for estimating future energy and cost 
savings in the iron and steel sector is limited. Understanding how to better represent existing 
technologies and emerging technologies that are not yet commercialized, in the long-term energy 
mixes/forecasts through the use of learning curves, requires improved methods of modelling. Energy 
optimization models are often applied for comprehensive analysis of sectoral and national energy and 
emission reduction potentials, outlining the likely future structure of the system under particular 
conditions and, thus providing insights into the technological paths and structural evolution (Mattson 
and Wene, 1997). The manner in which technological dynamics is considered in these models has a 
significant influence on the results. In linear programming models, extensively used for energy 
modelling purposes, technological change is generally introduced as an exogenous factor. The cost 
and efficiency of a given technology are considered either constant or as an exogenous function of 
time. This structure makes analysis of learning effects on technology costs and consequent 
penetrations levels almost impossible. Our investigation is designed to improve upon this simplistic 
picture, in order to better understand impact of learning in penetration of energy efficient technologies 
to the US iron and steel sector in the long term (e.g., from 2010 to 2050 defined in this analysis). The 
investigation is carried out using ISEEM, a technology oriented, linear optimization model for the 
U.S. iron and steel sector (ISEEM-USIS). In this study, the model is run in an iterative fashion in 
combination with a classical learning curve function (i.e., one factor learning curve). Accordingly, the 
study helps those who use energy models better manage the price barriers preventing unrealistic 
diffusion of energy-efficiency technologies, better understand the market and learning system 
involved, predict future achievable learning rates more accurately, and project future savings via 
energy-efficiency technologies with presence of learning.   
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Chapter 2 Learning Curve Approach 

Technological learning is a phenomenon by which production costs decrease in a specific relation to 
increased cumulative production. It assumes that a technology's performance improves as experience 
with the technology accumulates. Specifically, for each doubling of cumulative production, the unit 
production costs decrease by a certain value known as the learning rate (Junginger et al., 2010). 

2.1. Learning curve literature 

The learning curve concept was first developed by Wright (1936), who reported that unit assembly 
costs of airplanes declined significantly with accumulated experience of the workers (i.e., repetitions), 
and that this cost reduction was a constant percentage with every doubling of cumulative output. 

After being applied to analyze the relationship between the average unit price and cumulative output 
of 24 selected industrial products by Boston Consulting Group in 1968, learning phenomena has been 
adopted in empirical studies in a wide range of sectors (Arrow, 1962; Dutton and Thomas, 
1984; and Yelle, 1979), including the following: 

 manufacturing (Argote and Epple, 1990; Nadeau, 2010),  
 consumer products (Bass, 1980; Teng and Thompson, 1996),  
 energy supply technologies (Criqui et al., 2015; Goldemberg et al., 2004; Hettinga et al., 2009; 

Hong et al., 2015; OECD/IEA, 2000; Junginger et al., 2006; Li et al., 2012; McDonald and 
Schrattenholzer, 2001; Neij, 1997; Neij, 1999a&b; Neij et al., 2004; Nemet, 2006; Rose and 
Joskow, 1990; Rubin et al., 2006; Schoots et al., 2008; van der Zwaan and Rabl, 2003; Wene et 
al., 2005; and Yeh and Rubin, 2007),  

 energy demand technologies (Desroches et al., 2013; Weiss et al., 2010) and  
 environmental control technologies (Rubin et al., 2004; Taylor et al., 2013; and Yeh et al., 

2007). 

2.2. The learning curve formula 

The learning curve is a well-known analytical concept that describes the cost reduction potential of a 
technology as a function of experience quantified in terms of cumulative production. A typical one-
factor learning curve has the form of 

𝐶𝐶𝑡𝑡 = 𝐶𝐶1𝑋𝑋𝑡𝑡−𝑏𝑏                                                                       (2.1) 

log𝐶𝐶𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶1 − 𝑏𝑏 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑋𝑋𝑡𝑡                   (2.2) 

𝑃𝑃𝑃𝑃 = 2−𝑏𝑏                                   (2.3) 

𝐿𝐿𝑃𝑃 = 1 − 𝑃𝑃𝑃𝑃                                   (2.4)  
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where 𝐶𝐶𝑡𝑡 is the unit cost of production at time t,  𝐶𝐶1 is the first unit's production cost, 𝑋𝑋𝑡𝑡 is the 
cumulative production at time t, and b is the learning parameter (i.e., experience index), PR is the 
progress ratio, and LR is the learning rate. The progress ratio expresses the rate at which unit 
production cost declines for every doubling of cumulative production. For example, a progress ratio of 
90% equals a learning rate of 10% and thus means that unit production cost would decline 10% and 
reach 90% value whenever the production doubles. When learning takes place, the values of the 
progress ratios are expected to be between 0 and 1 (or 0% to 100%). As the ratio gets closer to zero, 
the learning becomes more rapid while getting close to one indicates lower rates of learning. On the 
other hand, PR = 1 means there is no change at unit production cost. PR > 1 indicates a cost increase 
and a loss in efficiency as the total production increases (instead of cost reduction and efficiency 
improvement).  

The learning curve in principle defines short-run (over which a firm’s size is fixed and the only 
variable resources are labor and raw materials) average variable cost (𝐶𝐶𝑡𝑡 in Eq. 2.1) as a function of 
the short-run average cost of the first unit of a commodity or service that was produced (𝐶𝐶1 in Eq. 
2.1), the cumulative total number of units produced (𝑋𝑋𝑡𝑡 in Eq. 2.1), and a parameter that measures the 
rate at which average cost declines as the total production increases (-b, Eq. 2.1). As the cumulative 
production used in the learning curve approach represents the total production up to a point in time, 
not total units per time period, the effect of learning curves are different from the result of economies 
of scale (Salvatore, 2014). 

Graphically, the learning curve is conventionally represented in a logarithmic scale Figure 1 shows an 
example for a linear scale and a log linear scale learning curve. 

  
 Figure 1 Learning curve in linear scale (a) and log linear scale (b)  

Figure 2 depicts a learning curve for wind turbines in which the unit price decreases as a function of 
cumulative sales. 

a b 
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Source: Neij, 1999a 
Figure 2 Learning curve for Danish-produced wind turbines (The PR is 96%)  
Learning curves are used to project the future cost reduction of a technology. Assessment of future 
costs are particularly important for emerging technologies that are new to the market. The cost of a 
new technology must decrease to a level that can be competitive against conventional technologies to 
be involved in the market. Figure 3 shows the decrease in cost of photovoltaic modules via learning 
curve. The difference between actual price and break-even price, that is, the additional costs for 
technology compared with the same service from technologies that are already in the market, is called 
the learning investment. 
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Source: OECD/IEA, 2000 
Figure 3 Learning curve for photovoltaic modules  

The conventional one-factor learning curve considers the specific investment cost of a given 
technology only as a function of cumulative capacity or cumulative production. This representation 
takes into account the effects of experience due to actual deployment of technologies, but is often 
criticized for not providing a mechanism to capture explicitly the effects of public and private research 
and development (R&D) efforts, which may also constitute another component of cost reductions, 
particularly in the early stages of development of a technology (Barreto and Kypres, 2004). 
Kouvariatakis et al. (2000a) extended the conventional learning curve formula to the so-called two-
factor learning curve to include the impact of R&D expenditures on cost reductions.   

While the concept of two-factor learning curve is theoretically appealing, significant problems were 
noted for this approach (Holmes, 2011). For example, reliable data on R&D spending is hard to 
collect and the quality of available data is often an issue. In addition, high degree of co-linearity 
between two variables, R&D investments and cumulative capacity or production, (e.g., they may 
influence one another), can lead to misleading conclusions.   For this reason, one-factor learning curve 
formula is still widely used for predicting production rate and cost in repetitive operations in the vast 
majority of studies. We are also using one-factor learning curve in this study. 

2.3. Learning curve criticisms 

While the basic learning curve approach itself stands out due to its simplicity, using the learning curve 
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is in practice often not as straightforward as it may be seen (Junginger et al, 2010). A number of 
uncertainties in the use of learning curves for forecasting or modeling future cost trends has been 
identified and their impacts in the analysis of cost developments has been criticized in the literature 
(Neij et al., 2004; Nemet, 2006; Alberth, 2008). Since the uncertainties can significantly influence the 
results, it is important to acknowledge these critiques. 

Choice of performance and learning indicators 
 
Production cost is the ideal performance indicator in the learning curve due to its direct relation to 
technical improvement. However, usually only price data is available for analysis. Using price instead 
of cost may be useful when price-cost margins are constant over time. This, unfortunately, requires a 
number of unlikely things to stay constant in an industry (Taylor and Fujita, 2013). Whereas cost 
changes occur over time due to changes in input prices and production efficiency, price changes can 
occur from several other factors (such as government subsidization, various marketing decisions, 
funding allocated to R&D, and commercialization initiatives). Learning analysis based on prices may 
be uninformative if price changes occur not based on production costs but based on other reasons 
unrelated to cost changes Papineau (2006). However, as Junginger et al. (2010) mentioned, even 
though cost data are a better measure of technical improvement, technology adaptation decisions are 
based on prices that consumers face, not the costs that producers face.  

Likewise, cumulative production (or cumulative output of the generating or converting technologies in 
the energy context) or cumulative installed capacity is often used in learning curve analysis as a 
substitute for accumulated learning. However, this assumption ignores the effect of knowledge 
acquired from other sources, such as from R&D or from other industries. In addition, for some 
specific cases, cumulative production or capacity is not well suited. For example, energy efficiency 
technologies and measures do not provide a direct output (i.e., energy), but rather conserving it (i.e. 
energy saving), which requires a clear definition of the energy saved, or alternatively, of energy 
efficiency gained (Jakob and Madlener, 2004). Thus, in the case of energy efficient technologies, 
learning curve reduces the cost for every doubling of cumulative energy savings. 

Using a constant progress ratio (learning rate) 
 
Whether the learning curves flatten out with increasing penetration or not, that is whether PR is 
constant or not is another issue often debated in the literature. Does the progress ratio (and therefore 
learning rate) remain constant over time, or does it change over the modeling period? Grubler (1998) 
argues that costs are reduced relatively rapidly during the innovation and R&D phase, but that the PR 
may change to a higher level (i.e., lower cost reductions) when a technology enters to the commercial 
market. Nemet (2009) has looked at the stability of learning rates for photovoltaic (PV) and wind 
technologies between 1975 and 2005, and also found evidence supporting the arguments of some 
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slowing in learning. Also, the joint approach of EPA and NHTSA to applying learning curves in 
vehicle regulatory impact assessments assumes a “steep” learning rate of 20% to reflect likely 
substantial learning in the near future for newer technologies, and a “flat” learning rate (1-3%) or no 
learning rate (0%) to reflect more limited learning opportunities, primarily associated with 
autonomous learning, for mature technologies Others, such as McDonald and Schrattenholzer (2002) 
argue that a constant PR may depend on exponential market growth. As soon as the turning point in 
the S-shaped penetration curve is reached, and annual production volumes become linear or even 
decrease, the learning curve will eventually flatten out and PR may reach unity (or LR may reach to 
zero). On the other hand, Junginger et al. (2010) argues that cumulative doublings of unit production 
are achieved with relative ease during the innovation and niche market phase of a technology, but as 
the market reaches saturation, it may take much time to get another doubling of cumulative 
production. Thus, the cost reduction possibilities are also limited by the market volume. Cost 
reduction may then slow in time, and come to a halt when the market is saturated, which does not 
necessarily require PR to change. However, Junginger et al. (2010) also mentions that products may 
change over time, as will input prices, and so on. Thus, the timeframe used in the learning curve 
analysis is also essential while estimating PR.  

Uncertainty of progress ratio (learning rate) 
 
Variation in progress rates, can have significant consequences, especially for exercises examining 
long-term perspectives. The literature provides some evidence of PR variability among different data 
sets, and sometimes within the same data set analyzing different time intervals or technology clusters. 
Dutton and Thomas (1984) compiled cost based learning curves from a wide spectrum of industries 
and found a peak of a distribution of PR values at 80% (see Figure 4), but with a wide distribution 
(and the second largest one indicates 89%-90%). McDonald and Schrattenholzer (2001) looked at the 
distribution of price-based PR values for energy technologies and reproduced Dutton and Thomas’s 
peak around 80%, but observed another peak around 95%. They concluded that 80-81% median value 
of progress ratios from general manufacturing firms could be a useful starting point until more 
detailed studies of energy technologies become available. However, as PR estimates directly affects 
cost forecasts, detailed sensitivity analysis of results to PR variability is necessary. This variability 
may be driven by several factors such as technology life cycle, market pricing strategies, assumptions 
about initial cumulative production and the associated start-off costs, definition of variables (cost or 
price data, cumulative capacity, production, or energy savings) (Junginger et al. 2010).  
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Source: Dutton and Thomas, 1984 
Figure 4 Progress ratios for industrial production  

In addition, variability in progress ratios may depend on how system boundaries are defined and differ 
depending on the properties of the technology. In particular, using the progress ratios based on 
national learning curves in global energy models or in modeling of another country, may provide 
misleading results. For different technology categories, Neij (1997) defines three different progress 
ratios. He indicates that the PR for modular technologies (such as solar panels) ranges from 75-90% 
(average 80%), for plant technologies (such as power plants) from 82-100% (average 90%), and for 
continuous processes (such as bulk production of chemical compounds) from 64-90% (average 78%). 
However, one can also argue that plant technologies are all technologies that combine several learning 
components. Such uncertainties should be taken into account while evaluating model outcomes. 
Figure 5 illustrates the range of learning rates (1% to 41.5%) from literature for various energy 
technologies (see Appendix A for the full list of 77 technologies) and shows a wide range of learning 
rates (varying - by source, country, and time period). 
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Source: Kahouli-Brahmi, 2008 (See Appendix A for details) 
Figure 5 Learning-by doing rates for selected energy technologies  

Detailed reviews on the histories, applications, and uncertainties of the experience curve can be found 
in the literature Yeh et al, 2007; OECD/IEA, 2000; Mattsson and Wene, 1997; Neij, 1997. 

2.4. Using learning curves in energy models  

Learning curves show the investment necessary to make an emerging technology competitive, but it 
does not forecast when the technology will reach a break-even point. Incorporation of learning in 
energy models helps identify the optimal timing for integrating the emerging technologies in the 
market. The learning curve is widely incorporated in energy models. Table 1 provides some examples 
of bottom-up, top-down, and hybrid energy models incorporating learning curves2. 

  

2 Bottom-up models represent the energy system with a technology rich description and put the emphasis on the correct 
description of energy sources and technologies at the disaggregated microeconomic level Fishbone et al., 1983, Junginger 
et al., 2010, Loulou et al., 2004, Schrattenholzer, 1981). Top-down models evaluate the system from aggregate economic 
variables and apply macroeconomic theory and econometric techniques to historical data on consumption, income, 
investments, GDP, imports, prices and factor costs to model the final demand for goods and services (Junginger et al., 
2010, Karali, 2012). Hybrid models combine technological explicitness of bottom-up models with the economic 
comprehensiveness of top-down models (Hourcade et al., 2006).  

11 

 

 

                                                 

http://www.sciencedirect.com/science/article/pii/S0360544207000515%23bib13


 

Table 1 Technological learning in bottom-up and top-down models  
Approach Model Parameter affected by 

learning 
Baseline 

Bottom-up MESSAGE Energy investment cost Messner (1997) 
GENIE Energy investment cost Mattsson (1997) and Mattsson; Wene 

(1997) 
MESSAGE Energy investment cost Grübler and Messner (1998) 

MESSAGE Energy investment cost Gritsevskyi and Nakicenovic (2000) 

MARKAL Energy investment cost Seebregts et al. (2000) 

POLES Energy investment cost Kouvaritakis et al., 
2000a and Kouvaritakis et al., 2000b 

MERGE Energy investment cost Manne and Richels (2004) 

DNE21+ Energy investment cost Sano et al. (2006) 

MESSAGE-
MACRO 

Energy investment cost Rao et al. (2006) 

GET-LFL Energy capital cost and 
energy conversion 
activities. 

Hedenus et al. (2006) 

Top-down DEMETER Energy production cost Van der Zwaan et al. (2002) and 
Gerlagh and van der Zwaan (2003) 

ETC-RICE Abatement activities and 
knowledge stock. 

Buonanno et al. (2003) 

RICE Energy investment cost and 
knowledge stock. 

Castelnuovo et al. (2005) 

E3MG Energy investment cost 
(electricity generation 
technologies). 

Barker et al. (2006) 

IMACLIM-R Energy investment cost 
(electricity generation 
technologies). 

Crassous et al. (2006) 

Hybrid NEMS Energy investment cost 
(electricity generation 
technologies) 

US EIA 2014 (2014) 

Source: Junginger et al. 2010, US EIA 2014 

In addition, Table 2 shows examples of learning parameters for new generating technology 
components reflected in the NEMS Electricity Market Module. 
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Table 2 Learning parameters for new generating technology components 

Technology Component Period 1 
(LR 1) 

Period 2 
(LR 2) 

Period 3 
(LR 3) 

Period 1 
(Doublings) 

Period 2 
(Doublings) 

Minimum 
Total 
Learning by 
2035 

Pulverized Coal - - 1% - - 5% 
Combustion Turbine - 
conventional 

- - 1% - - 5% 

Combustion Turbine - 
 

- 10% 1% - 5 10% 
Heat Recovery Steam 

  
- - 1% - - 5% 

Gasifier - 10% 1% - 5 10% 
Carbon Capture/Sequestration 20% 10% 1% 3 5 20% 
Balance of Plant - IGCC - - 1% - - 5% 
Balance of Plant - Turbine - - 1% - - 5% 
Balance of Plant - Combined 

 
- - 1% - - 5% 

Fuel Cell 20% 10% 1% 3 5 20% 
Advanced Nuclear 5% 3% 1% 3 5 10% 
Fuel prep - Biomass - 10% 1% - 5 10% 
Distributed Generation - Base - 5% 1% - 5 10% 
Distributed Generation - Peak - 5% 1% - 5 10% 
Geothermal - 8% 1% - 5 10% 
Municipal Solid Waste - - 1% - - 5% 
Hydropower - - 1% - - 5% 
Wind - - 1% - - 5% 
Wind Offshore 20% 10% 1% 3 5 20% 
Solar Thermal 20% 10% 1% 3 5 10% 
Solar PV - Module - 10% 1% - 5 10% 
Balance of Plant - Solar PV - 10% 1% - 5 10% 
Source: US EIA 2014 (U.S. Energy Information Administration, Office of Electricity, Coal, Nuclear    and 
Renewables Analysis) 

Since bottom-up models can capture technologies with a very detailed level of technical and economic 
characteristics, they are more suitable to implementing learning curves for specific technologies, 
compared to top-down models.  In top-down models, technological learning is generally incorporated 
to analyze the impact of learning on abatement costs. Bottom-up models, on the other hand generally 
model investment costs of a technology as a function of cumulative installed capacity or production 
(Junginger et al. 2010). Introduction of learning curves in bottom-up energy system models as 
endogenous variable, however, results in non-convex and non-linear mathematical problems. This 
topic is discussed more detailed in Chapter 3. 
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2.5. Using learning Curves for the U.S. Iron and Steel Sector 

Existing literature shows that learning curves provide a rational and systematic approach to estimate 
future cost trends based on historical observations and performance of technologies.  

Data and Methodology 

In this study, we analyze the learning effect on cost developments and technological progress of 
energy efficient (EE) technologies in the U.S. iron and steel sector. We first develop a set of learning 
curves characterizing historical cost trends for 75 EE technologies (43 in the Basic Oxygen Furnace 
(BOF) production route and 32 in the Electric Arc Furnace (EAF) production route) currently in use in 
the U.S. iron and steel sector (Karali et al., 2013; Worrell et al., 1999; See Table B1 in Appendix B for 
the entire list). The cost associated with EE technologies represents the expense of retrofitting the 
existing production structure with an EE technology. 

For those 75 technologies, we have obtained cost and energy savings data from the literature for two 
specific years; 1994 and 2002. In an energy context, learning curves typically describe the relation 
between specific costs of energy generated (or converted) and the cumulative output of the generating 
or converting technologies studied (measured in capacity units such as kW, or number of units 
produced such as kWh, and the like) (Jakob and Madlener, 2004). In contrast, energy efficiency 
technologies and measures do not provide energy, but rather help to conserve it (i.e. to bring energy 
saving), which calls for the definition of a Baseline (or baseline) for the measurement of the amount 
of energy conserved (i.e., energy saving), or energy efficiency gained, respectively (Jakob and 
Madlener, 2004; see Section 2.3.). In addition, our historical data only provides energy saving 
associated with each energy efficient technology.  

Accordingly, our independent variable in the one-factor learning curve formula is cumulative energy 
saving, while retrofit cost of an EE technology is the dependent variable. We assume the cost of a unit 
energy saving (1 GJ in this specific case) in 1994 as our initial cost (i.e., start-off cost). The cost in 
2002, then, is the product of the cumulative energy saving (in GJ) between 1994 and 
2002.Accordingly, the learning curve formula that we use to derive learning rates is in the following 
form: 

𝐶𝐶2002 = 𝐶𝐶1994(𝑋𝑋2002 − 𝑋𝑋1994 + 1)−𝑏𝑏                             (2.5)                                            

𝑃𝑃𝑃𝑃 = 1 − 𝐿𝐿𝑃𝑃                                 (2.6)     

𝐿𝐿𝑃𝑃 = 1 − 2−𝑏𝑏                                 (2.7)     

where 𝐶𝐶2002 is the unit retrofit cost at 2002,  𝐶𝐶1994 is the unit retrofit cost at 1994 (i.e., our start-off 
cost), 𝑋𝑋2002 − 𝑋𝑋1994  is the cumulative energy saving between 1994 and 2002 (‘1’ in the formula, 
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𝑋𝑋2002 − 𝑋𝑋1994 + 1, represents the initial unit energy saving), b is the learning parameter, PR is the 
progress ratio, and LR is the learning rate. Retrofit cost decreases according to PR in each doubling of 
energy savings (in GJ). 

The investment cost learning curves for four sample technologies are shown graphically in both linear 
and log-linear (on X-axis) scales in Figure 6 - 9. These sample technologies have different penetration 
levels in 2002, representing the variety of penetrations in existing EE technologies in the U.S. iron and 
steel sector. Figure 6-9 illustrates how learning acquired through cumulative energy saving reduces 
the costs between 1994 and 2002. Table B 2 in Appendix B summarizes the learning rates for retrofit 
cost for the 75 technologies examined in this study. All learning rates derived in this study fall within 
the range of 1%-41.5% reported in the literature for an array of energy-related technologies studied 
by Kahouli-Brahmi (2008).  

 
Figure 6 (a) Linear scale learning curve for Sinter Plant Heat Recovery, (b) Log-linear 
scale learning curve for Sinter Plant Heat Recovery (Cumulative energy saving (CES) 
between 1994 and 2002 = 48.1 PJ, Penetration in 2002 = 100%, LR = 0.012) 

 
Figure 7 (a) Linear scale learning curve for Hot Blast Stove Automation, (b) Log-linear 
scale learning curve for Hot Blast Stove Automation (CES between 1994 and 2002 = 
131.8 PJ, Penetration in 2002 = 60%, LR = 0.026) 
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Figure 8 Linear scale learning curve for Hot Charging, (b) Log-linear scale learning 
curve for Hot Charging (CES between 1994 and 2002 = 44.5 PJ, Penetration in 2002 = 
21%, LR = 0.067) 

 
Figure 9 Linear scale learning curve for Bottom Stirring, (b) Log-linear scale learning 
curve for Bottom Stirring (CES between 1994 and 2002 = 4.2 PJ, Penetration in 2002 = 
11%, LR = 0.101) 

Figure 6 shows the learning curve for sinter plant heat recovery technology, which has penetration 
level of 100% in 2002 on the U.S. market. This is an example of a technology which has reached 
maturity. The learning curve for sinter plant heat recovery shows a modest progress ratio of 98.8%, 
corresponding to a learning rate of 1.2%. Hot blast stove automation, which has penetration level of 
60% in 2002, is similar to sinter plant heat recovery. This technology in Figure 7 shows progress ratio 
of 97.4%, corresponding to a learning rate of 2.6%. 

On the other hand, learning curves for hot charging technology in Figure 8 and bottom stirring 
technology in Figure 9 indicate a decrease in prices through cumulative energy saving. They have 
6.7% and 10.1% learning rates, respectively. Both of those technologies have relatively low 
penetrations; 21% for hot charging technology and 11% for bottom stirring technology. This also 
corresponds to the literature review we did earlier by indicating higher learning rates for technologies 
that have low penetration levels (i.e., assuming those are the technologies at the beginning of 
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deployment to the market). In addition, almost the same absolute increase in cumulative energy saving 
in Figure 6 for sinter plant heat recovery and in Figure 8 for hot charging shows that the learning 
effect is more dramatic for technologies with lower penetration. 

Based on our findings on learning rates, we have calculated average learning rates by technology 
penetration level. Table 3 summarizes the average learning rates calculated for EE technologies with 
different penetration levels. 50 technologies (67% of existing EE technologies considered in this 
study) have a learning rate of 3% or lower. The technologies that are in the lowest penetration interval 
have the highest learning rate of 10%. This rate drops down to 2% in the highest penetration interval. 
These results show that learning slows down with the increasing penetration (maturity) of the 
technology in the U.S. iron and steel sector. 

Table 3 Penetration and average learning rates of EE technologies  

Penetration 
# of Energy 
Efficient 
Technologies 

 
Average Learning 
Rate # of EE Techs in 

BOF Route 
# of EE Techs in 

EAF Route 

[80-100%] 27 (36%) 20 (47%) 7 (22%) 2% 
[60-80%) 8 (11%) 3 (7%) 5 (16%) 3% 
[40-60%) 15 (20%) 9 (21%) 6 (19%) 3% 
[20-40%) 19 (25%) 9 (21%) 10 (31%) 6% 
[0-20%) 6 (8%) 2 (5%) 4 (13%) 10% 
Total 75 (100%) 43 (100%) 32 (100%)  
(Note: Penetration of energy efficient technology in this analysis is defined as follows: for technologies in 
BOF production route, share of total U.S. integrated steel production to which measure is applied; and for 
technologies in EAF, share of total U.S. secondary production to which measure is applied. See Appendix 
B for the entire list.) 
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Chapter 3 Technological learning in ISEEM 

This chapter describes the methodological approach used to endogenize the learning curves in 
ISEEM. ISEEM is a technology-oriented model. It uses a rich representation of supply and demand 
technologies to identify future cost effective technological options and assess their role in the energy 
system under different conditions. This model in standard form can assume exogenous technological 
change, i.e., the unit cost and efficiency of technologies can improve by constant rates over time and 
are independent of each other. 

Incorporating learning curves as endogenous variables in bottom-up energy system models causes 
computational problems due to the non-convexity and non-linearity of the learning curve (Berglund 
and Soderholm, 2006). Most of the time there are multiple local optima which creates difficulty in 
identifying the global optimum. The most common way of solving this problem in linear 
programming models is so-called mixed integer programming (MIP), as reported in the literature for 
MESSAGE (Messner, 1997) and GENIE energy models (Mattsson, 1997). Such an approach consists 
of a piece-wise approximation of the total cumulative cost curve, using integer variables to control the 
sequence of segments along the curve, which enables the models to find a global optimum. However, 
it is very computer intensive and increases the computational complexity compared to the 
conventional Linear Programming (LP) models without endogenous learning. The solution time and 
the success to find optimal solutions depend on specific solver options. In addition, the accuracy 
depends on segmentation of step-wise linearization of the cumulative cost curve (Seebregts et al., 
1999). 

To overcome difficulties in computation in MIP, we use an iterative solution algorithm between 
ISEEM and the learning curve formula (see Figure 10). This approach integrates learning curves 
outside the actual optimization, hence it does not cause the mathematical difficulties mentioned above. 
ISEEM optimization is executed on periodic basis. Based on the optimum solution of ISEEM, 
cumulative activity (i.e., production) of each EE technology at the beginning of period t (excluding 
period t) is passed to the learning curve formula. With this information, learning curve-adjusted costs 
of the technologies at t are calculated. The ISEEM model simultaneously uses the costs transferred 
from the learning curve formula to calculate the cumulative activity of the following period (t+1). 
This iteration continues until the end of the planning horizon. The iteration process is half-
automatized. Learning curve formula is embedded into the parameter definition module of ISEEM, 
and cumulative activity from ISEEM optimization is internally passed to that module. New cost 
information from learning curves (output of learning curve formula), however, needs to be manually 
transferred to the ISEEM input database.  
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Figure 10 Iteration between ISEEM and learning curve 

The iterative solution algorithm requires the following input parameters for each EE technology: 

• Retrofit cost at the start period (𝐶𝐶1) 
• Penetration rate at the start period  
• Learning rate 

The penetration rate enables ISEEM to calculate initial cumulative activity of the associated 
technology. For each EE technology, a pseudo technology is created (Figure 11). Pseudo technology is 
a duplicate of EE technology with no associated cost and efficiency (i.e., input/output (I/O) ratio 
equals to 1/1). If there is no activity on EE technology, pseudo technology would work 100% (i.e., 
there will be no efficiency measure implementation). If there is an activity on EE technology, the 
output will be shared with the pseudo technology. The share of each EE technology is fixed to 
penetration rate at the start year. 
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Figure 11 Schematic illustration for implementation of energy efficient technologies in ISEEM 

ISEEM begins accumulating production (i.e., activity) of the EE technologies starting from the start 
period of the model. The cumulative production of the existing EE technologies before the beginning 
of the planning horizon is not taken into account. Since the cost at the start period of the planning 
horizon is the initial cost of the learning curve formula, this approach would not disturb the accuracy 
of the calculations. The learning curve formula we use is as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 (𝐶𝐶) =  ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝑙𝑙 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 (𝐶𝐶) 𝑖𝑖=𝑡𝑡−1
𝑖𝑖=0            (3.1) 

𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 (𝐶𝐶) = 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 (0) ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 (𝐶𝐶)−𝑏𝑏           (3.2) 

𝑃𝑃𝑃𝑃 = 2−𝑏𝑏                 (3.3) 

where the cumulative activity of an EE technology at period t (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 (𝐶𝐶) in GJ) is the 
sum of annual activity of the technology until the period t (i.e., between the start period (t=0) and the 
period t-1 (excluding period t)). 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 (𝐶𝐶) is the unit retrofit cost (in $/GJ) of the technology at 
period t,  𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 (0) is the unit retrofit cost (in $/GJ) of the technology at the start period, b is the 
learning parameter, and PR is the progress ratio. 

For demonstration technologies, on the other hand, there is no observed penetration, thus, no 
associated cumulative activity, in the start period, since they’ve never been used before. They may or 
may not be adopted through the modeling periods depending on the cost minimization objective. 
However, as discussed in Section 2, to decrease the cost via learning curve formula a doubling of 
cumulative activity is needed. From this point of view, in the implementation of technological 
learning for a demonstration technology, ISEEM assumes a doubling of cumulative activity in the first 
period that the technology is available. This way, the retrofit cost of a demonstration technology 
decreases based on the learning rate in the following period, which is an exogenous stimuli to the 
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ISEEM. However, from this point onward, the system is free and the optimization procedure decides 
on whether further investment on the demonstration technology is needed for the cost minimization 
objective. If there is investment, cost continues to decrease via learning curve. If there is no 
investment, technology is abandoned at the end of its lifetime.   
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Chapter 4  ISEEM-U.S. iron and steel sector (ISEEM-USIS) model  

4.1. Calibration and General Assumptions 

In this study, the analyses is concentrated on the U.S. iron and steel sector. ISEEM is calibrated for the 
U.S. iron and steel sector for the base year 2010. 2010 is chosen as the calibration year because 
reliable data is available for 2010 and there were no extraordinary political, economic or social events 
in 2010. The planning horizon is developed in 5-year time intervals extending from 2010 to 2050. The 
model includes 126 process technologies, which are composed of current production technologies (18 
technologies) and advanced production technologies (108 technologies). Current production 
technologies represent the process technologies that are currently used for iron and steel production in 
the U.S., such as BOF and EAF production route technologies. Advanced production technologies 
(i.e., newer/updated versions of current production technologies) are assumed to represent the 
autonomously improved versions of current iron and steel production technologies. It is assumed that 
those technologies would be available in the model in each year with no additional cost. We adopted 
an annual energy efficiency improvement rate of 0.75%, which was applied in the ISEEM model of 
the U.S. iron and steel sector (Karali et al., 2013). EE technologies represent the existing and 
emerging (i.e. in demonstration phase) energy efficiency measures in the U.S. iron and steel sector. 
There are 75 existing and 11 demonstration EE technologies in the model. The majority of those 
measures are not competing among themselves. Instead, each of them is a candidate to be adopted if 
cost effective (i.e., reducing the cost minimization objective of ISEEM-USIS). The only competing 
measures that are currently effective in the U.S. are different fuel injections to blast furnaces; (1) 
injection of 130kg pulverized coal per tonne of hot metal, (2) injection of 225kg pulverized coal per 
tonne of hot metal, (3) injection of 140kg natural gas per tonne of hot metal, and (4) injection of 
130kg oil per tonne of hot metal.  

Table B 2 in Appendix B provides the basic parameters of the EE technologies considered in this 
study.  
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Figure 12 Production flow representations of the U.S. iron and steel sector in ISEEM-USIS 

For the annual projections of the steel production in the U.S. and more details on assumptions (such as 
energy and raw material prices, exogenous demand growth, production constraints, and so on) and 
calibration included in ISEEM modeling we refer the reader to Karali (2013). A discount rate of 10% 
is used and a lower bound on annual production from BOF route is set to 10% of the U.S. steel 
production capacity. Because the total cost of steel production via BOF production route is higher 
than those via EAF production route, the ISEEM-USIS model’s optimization process would tend to 
reduce the share of BOF production when seeking alternative processes with the least costs, such as 
EAF.  However, in reality, it would be inappropriate to totally abandon BOF production route, because 
BOF is necessary for producing high-quality steel that EAF process just would not be able to achieve 
(Grobler and Minnit, 1999).  

Future prices of the raw materials and energy sources used in the analysis are listed in Table 4 – 6. 

Table 4 Iron ore and scrap prices used in the ISEEM-USIS model (2005 $/tonne material) 
 2010 2015 2020 2025 2030 2035 2040 2045 2050 
Domestic Iron Ore 88 115 128 140 139 133 129 132 126 
Import Iron Ore 97 118 136 150 149 141 136 141 133 
Domestic Scrap 284 373 423 466 461 439 425 416 404 
Import Scrap 334 434 489 535 530 506 490 505 479 
Source: Karali et al. (2013) 
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Table 5 Steam coal, electricity, miscellaneous oil, and natural gas prices considered in the 
ISEEM-USIS model (2005 $/GJ fuel) 
 2010 2015 2020 2025 2030 2035 2040 2045 2050 
Steam Coal 2.3 2.7 2.8 2.8 2.9 3.1 3.2 3.4 3.6 
Electricity 16.7 15.5 15.5 15.9 15.9 16.9 16.9 16.9 17.0 
Miscellaneous Oil 11.0 14.4 18.3 21.7 25.0 27.9 31.6 35.8 40.5 
Natural Gas 4.5 5.0 5.4 6.3 6.7 7.3 8.1 8.9 9.8 
Source: Karali et al. (2013) (Note: The gray shaded cells represent the prices in EIA’s Annual Energy Outlook, 
2011) 

Table 6 Coking coal and coke prices considered in the ISEEM-USIS model (2005 $/tonne fuel) 
 2010 2015 2020 2025 2030 2035 2040 2045 2050 
Coking Coal 163 178 201 220 218 208 202 208 197 
Source: Karali et al.  (2013)  

Retrofit costs of EE technologies decrease with the learning rates that we calculated in Chapter 2 and 
listed in Table B 2 in Appendix B). We assume that reduction of cost via learning slows down in time 
with increasing penetration. Thus, progress ratios (or learning rates) of EE technologies change to a 
higher level (or a lower level) with time. It is assumed that progress ratios (or learning rates) increase 
(decrease) 10% per year starting from the first year in which the learning is applied. In addition, the 
average LR rate of 0.1 calculated for the penetration interval [0-20%) (see Table 3 in Chapter 2) is 
used for demonstration technologies as the initial learning rate in the first year that the technology 
becomes available. Then, LR rate is changed to a lower level (listed in Table 3 in Chapter 2) as 
technology penetrates. For the other technologies (i.e., current and advanced production technologies) 
investment costs are assumed constant along the horizon (i.e., PR is considered equal to one). We 
didn’t use any maximum growth constraints to control the penetration of the technologies.  

As discussed in Chapter 2, there is uncertainty concerning learning rates and technology 
characteristics. Therefore, the analysis and the results conducted in this study should be regarded 
much more as what could happen if progress could be sustained at such pace. In addition, some 
technologies that have high penetration rates in the U.S. might have lower penetration rates in other 
countries, especially in developing countries such as China and India. Thus, from the global 
perspective, average learning rates could be higher than the ones that we obtained for the U.S. iron 
and steel sector. 

4.2. Scenarios 

Total of three scenarios are analyzed within the scope of this study. The Frozen scenario describes the 
development of the iron and steel sector where no additional production or energy policies are 
implemented. In addition, it is implicitly assumed that penetration levels of existing EE technologies 
are static at current levels until 2050, and there is no learning curve application. Production shares of 
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BOF and EAF, on the other hand, are not fixed and may change as a result of cost minimization 
objective. There is a 10% lower limit on the share of BOF production through the periods. In the 
Baseline scenario, limitations on penetration of EE technologies are eliminated. Thus, the model has 
the flexibility to invest in efficiency without any limitation. The other characteristics of this scenario 
are the same with the frozen scenario, such as no learning curve application. Learning is applied in the 
Learning scenario with flexible penetration of EE technologies. Table 7 summarizes the basic 
characteristics of the scenarios considered in this study. 

Table 7 Scenarios defined in the ISEEM-USIS analysis  

  Frozen 
• Penetration of existing efficiency measures/technologies is constant at 2010 levels 
• No demonstration technologies (that are not commercialized yet but technically 

feasible) 
• No learning 

Baseline 

• No limits on penetration of existing efficiency measures/technologies starting from 
2015 

• Demonstration technologies (that are not commercialized yet but technically 
feasible) available starting from 2020 

• No learning  

Learning 

• No limits on penetration of existing efficiency measures/technologies starting from 
2015 

• Demonstration technologies (that are not commercialized yet but technically 
feasible) available starting from 2020 

• Cost reductions over time according to learning curves 

4.3. Results 

The results from the ISEEM-USIS model presented in this section illustrate the impact of 
technological learning on the structure of the U.S. iron and steel sector.  

Penetration (Adoption of energy efficient technologies) 

Table 8 summarizes the levels of existing EE technologies in the U.S. iron and steel sector in all 
scenarios according to their penetration levels3, as modeled by ISEEM-USIS. Penetrations of the EE 
technologies at 2015 are calibrated based on the penetration levels in 2002 (Worrell et al., 1999; 
Karali et al., 2013) because of limited data, and do not differentiate among scenarios in that particular 
year. In the Frozen scenario, the penetration levels are kept constant at 2015 levels until the end of the 
planning horizon (i.e., 2015-2050), thus, the number of technologies in each penetration level, listed 
in Table 9, does not change.  

3 As noted in Table 3, penetration of energy efficient technology in this analysis is defined as follows: for technologies in 
BOF (i.e., integrated steel) production route, share of total U.S. integrated steel production to which measure is applied; 
and for technologies in EAF (i.e., secondary steel, production), share of total U.S. secondary production to which measure 
is applied. See Appendix B for the entire list.) 
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In the Baseline scenario, where there is no learning, 57% and 89% of the EE technologies have more 
than 80% of penetration in 2025 and 2050, respectively (up from 36% in 2015). These results indicate 
that most of the existing EE technologies that are currently used in the U.S. iron and steel sector are 
cost effective. Penetration levels increases through the years, even though there is no technology cost 
reduction. In addition, none of the demonstration technologies, which are not commercialized yet but 
technically feasible, are adopted in this scenario. This indicates that those technologies are not 
economically feasible in the ISEEM-USIS model with the current cost structure, as assumed at the 
beginning.  

In the Learning scenario, where price reduction of existing EE technologies are observed, 57% and 
93% of the efficiency measures have more than 80% of penetration in 2025 and 2050, respectively. 
Since most of the existing EE technologies are cost effective and progressively adapted through the 
years as observed in the Baseline scenario, decreasing costs via the learning curve does not 
significantly alter results between the two scenarios (i.e., Baseline and Learning scenarios). The share 
of technologies that have penetration level of more than 80% in 2050 increases from 89% in the 
Baseline scenario to 93% in the Learning scenario. However, the results indicate that some of the 
demonstration technologies are adapted in the mid-term and their penetration levels increase as the 
prices go down in the Learning scenario (see Table 9). Furthermore, even though Blast Furnace Heat 
Recuperation4 (BF-HR) is listed as a demonstration technology, it becomes economically feasible in a 
very short period of time and gets 100% penetration in 5 years from its initial availability in 2020). 

Table 8 Penetration levels by scenario 

 
Frozen Baseline Learning 

Penetration 
level 2010-2050 2015 2025 2050 2015 2025 2050 
[80-100%] 36% 36% 57% 89% 36% 57% 93% 
[60-80%) 11% 11% 16% 1% 11% 16% 4% 
[40-60%) 20% 20% 19% 4% 20% 21% 3% 
[20-40%) 25% 25% 8% 5% 25% 5% 0% 
[0-20%) 8% 8% 0% 0% 8% 0% 0% 
 100% 100% 100% 100% 100% 100% 100% 

4 The heat of hot blast stove flue gases, with an exit temperature of approximately 480°F (250°C), can be recovered to 
preheat the combustion air of the stoves to reduce energy consumption. 
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Table 9 Penetration levels of demonstration technologies in the Learning scenario 
  2020 2025 2030 2035 2040 2045 2050 
SIN-SWGR - - - - - - - 

COK-APCS - - - - - - - 

COK-NRCO - - - - - - - 

SCOPE21 - - 50% 56% 61% 62% 62% 

BF-HR - 100% 100% 100% 100% 100% 100% 

BF-SHR - - - - 68% 100% 100% 

BF-AUCOG - - 2% - - - - 

BOF-ABA - - 7% 43% 89% 100% 100% 

EAF-ABA - 4% 52% 76% 97% 100% 100% 

BOF-ISRT - - 100% 100% 100% 100% 100% 

EAF-ISRT - - 34% 98% 100% 100% 100% 
(Note: See Table B3 in Appendix B for full names of technologies) 

One of the other major difference between the Baseline and Learning scenarios is the increasing 
penetration of 225kg pulverized coal injection (PCI225) in the Learning scenario. Currently, in the 
U.S. iron and steel sector, there are four competitive injection methodologies that are used in iron 
making (i.e., blast furnaces) to decrease the amount of coke needed5; (1) injection of 130kg pulverized 
coal per tonne of hot metal, (2) injection of 225kg pulverized coal per tonne of hot metal, (3) injection 
of 140kg natural gas per tonne of hot metal, and (4) injection of 130kg oil per tonne of hot metal. 
Those technologies have penetration levels of 21%, 26%, 21%, and 21%, respectively, in the base 
year. Since they are competing with each other, an increase in one’s penetration results in a decrease 
in another’s penetration. Injected fuel is replaced with coke in blast furnaces. 

In the Baseline scenario, penetration levels of those injection technologies do not significantly change. 
In the Learning scenario, on the other hand, with decreasing prices under the impact of learning, 
injection of 225kg pulverized coal technology displaces with other injection technologies and reaches 
100% penetration starting from 2030.  

Energy Consumption 

Figure 13 shows the annual steel production in the U.S. forecasted by the ISEEM-USIS model in all 
scenarios. The use of EAF as a low-cost steel production process dominates the U.S. steel production. 
Because of high production costs, the share of BOF steel production gradually decreases until the 

5 One of the main energy and cost saving measures for blast furnaces is replacing some of the coke input by injecting other 
hydrocarbon sources (IPPC, 2011). Coal and oil are the most commonly used injectants, while other hydrocarbons include 
natural gas, coke oven gas, basic oxygen furnace gas, oil and plastics (IPPC, 2011 and Worrell et al., 2010). 
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lower limits set in the model assumptions are reached (in 2035). This result does not differ in between 
scenarios.  

 
Figure 13 BOF and EAF productions in all scenarios (Mtonnes) 

EAF production process requires only about one-third of the primary energy needed in the BOF 
production route, since the most energy intensive steps in the steel sector has been carried out in the 
BOF route. As a consequence of decreasing BOF share, consumptions of final and primary energy 
decrease in all scenarios through the years (Figure 14 - 15). In addition, lower levels of energy 
consumption are observed in the Baseline and Learning scenarios between 2020 and 2050, compared 
to the Frozen scenario (Table 10 - 11), as a consequence of an increasing penetration of EE 
technologies in both scenarios. As mentioned earlier, 89% and 93% of the existing EE technologies 
have more than 80% penetration in 2050 in the Baseline and Learning scenarios, respectively 
(compared to 36% in Frozen scenario). Higher penetration of existing EE technologies, particularly 
PCI225, in the Learning scenario further reduces the energy consumption compared to the Baseline 
scenario.  In addition, penetration of some of the demonstration technologies (see Table 9), 
particularly after 2040, also contributes to the lower energy consumption in the Learning scenario. 
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Figure 14 Annual total final energy consumption in the U.S. iron and steel sector in all scenarios 
(PJ) 

Table 10 Reduction in annual total final energy consumption in the U.S. iron and steel sector in 
the Baseline and Learning scenarios (compared to Frozen scenario) 

 
2020 2025 2030 2035 2040 2045 2050 

Baseline 2.6% 3.7% 4.6% 5.5% 5.8% 6.3% 6.6% 
Learning 5.5% 7.2% 10.8% 9.8% 11.6% 12.0% 12.2% 

 
Figure 15 Annual total primary energy consumption in the U.S. iron and steel sector in all 
scenarios (PJ) 
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Table 11 Reduction in annual total primary energy consumption in the U.S. iron and steel sector 
in the Baseline and Learning scenarios (compared to Frozen scenario) 

 
2020 2025 2030 2035 2040 2045 2050 

Baseline 2.9% 4.0% 5.1% 6.2% 6.8% 7.4% 7.5% 
Learning 4.9% 6.5% 9.2% 8.9% 10.5% 11.1% 11.3% 
 
In all scenarios, the consumption of coking coal (which is the main energy source of BOF production 
route) drops significantly as a consequence of the declining BOF production (Figure 16). In the 
Learning scenario, with increasing penetration of PCI225 and implementation of demonstration 
technologies, coking coal consumption decreases even more, reaching 80.1PJ in 2050, compared to 
the 139.4PJ in the Frozen scenario and 138.1PJ in the Baseline scenario. But in return, coal 
consumption increases in the Learning scenario. However, burning coal instead of burning coke in 
blast furnaces is more environmentally friendly than burning coking coal to make coke and then 
burning that coke in blast furnaces6.  
Oil injection in blast furnaces (to replace coke) is abandoned in both the Baseline and Learning 
scenarios, since it is not economic compared to injection of pulverized coal. This explains the decline 
in oil usage in scenarios. Increasing overall efficiency also contributes declining oil usage. Natural gas 
consumption, on the other hand, is pretty similar in all scenarios through the years. Even though there 
is a reduction in natural gas usage due to increasing overall efficiency and the elimination of natural 
gas injection in blast furnaces, some of the EE technologies that decrease electricity consumption 
requires additional usage of natural gas. This situation causes slightly larger natural gas consumption 
in the Baseline scenario compared to the Frozen scenario. In the Learning scenario, there is slightly 
lower natural gas consumption, while electricity consumption drops in each scenario, increasing 
overall efficiency (compared to the Frozen scenario).  

6 Emission factors – burning steam coal: 92.2 KgCO2/GJ coal; burning coking coal: 94.6kgCO2/GJ coking coal; burning 
coke: 107kgCO2/GJ coke, coke production process emission: 20kgCO2/GJ coke 

30 

 

 

                                                 



 

 
Figure 16 Breakdown of the U.S. iron and steel sector's annual final energy consumption in all 
scenarios (PJ) 

Table 12 lists in detail where the energy savings in the Learning scenario comes from. As can be seen, 
increased penetration of PCI225 has a large impact. 35% and 26% of the total energy saving in 2030 
and 2050 is from PCI225, and approximately 8% of the savings come from demonstration 
technologies after 2030.  In addition, compared to the Baseline scenario, energy saving from existing 
EE technologies increases 34% (from 28.83PJ to 38.77PJ) in 2030 and 23% (from 39.65PJ to 
48.72PJ) in 2050 in the Learning scenario. 
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Table 12 Energy savings in the Learning and Baseline scenarios in PJ (compared to Frozen 
scenario)  
  2010 2020 2030 2040 2050 
Frozen 858.07 722.20 632.84 593.17 606.78 
Baseline 858.07 703.38 603.61 558.51 566.79 

Total Energy Saving in Baseline Sce. - 18.82 29.23 34.67 39.99 
Savings from PCI225 - 0.43 0.40 0.33 0.34 
Savings from existing energy 
efficient tech (excluding PCI225) 

- 18.40 28.83 34.34 39.65 

Learning 858.07 682.59 564.65 524.47 532.83 
Total Energy Saving in Learning Sce. - 39.61 68.19 68.71 73.95 

Savings from PCI225  - -  23.90 19.05 19.49 
Savings from SCOPE21  - -  1.31 1.30 1.33 
Savings from BF_HR  - -  0.86 0.68 0.70 
Savings from BF_AUCOG  - -  - - - 
Savings from BOF_SHR  - -  - 0.18 0.19 
Savings from BOF_ABA  - -  - 0.07 0.07 
Savings from BOF_ISRT  - -  0.41 0.28 0.28 
Savings from EAF_ABA  - -  0.65 0.70 0.72 
Savings from EAF_ISRT  - -  2.28 2.47 2.53 
Savings from existing energy 
efficient tech (excluding PCI225) 

 - 39.61 38.77 44.04 48.72 

Figure 17 - 18 show total energy consumptions in BOF and EAF routes separately. As seen from 
Figure 18, the difference of EAF route energy consumption in the Baseline and Learning scenario is 
very little. This result indicates that almost all of the EE technologies in the EAF production route are 
already cost effective, and are invested through the years without any reduction in prices. The minor 
difference between the two scenarios’ energy consumption (i.e., Baseline and Learning scenarios) is 
due to implementation of two demonstration technologies (EAF-ABA and EAF-ISRT). Compared to 
this, learning effect on BOF production route is more straightforward. Figure 17 shows the additional 
energy savings in the BOF route in the Learning scenario due to reducing prices. In the Baseline 
scenario, there is not much difference in energy consumption compared to the Learning scenario. In 
contrast, in the Learning scenario, energy consumption is 15% lower than the Baseline scenario in 
2050 (down from 251 PJ in the Baseline scenario to 213PJ in the Learning scenario). As mentioned 
above, BOF production gradually decreases until the lower limits set in the model assumptions are 
reached because of its high production costs. As a consequence, contribution of energy efficiency 
improvement in the BOF route does not make a large impact in the overall energy consumption of the 
iron and steel sector. A sensitivity run indicates that if BOF production has the current share in 2050 
in all scenarios, energy saving via learning in the U.S. iron and steel sector would be 80% higher.  
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Figure 17 Annua primary energy consumption in the BOF production route in all scenarios 

 
Figure 18 Annual primary energy consumption in the EAF production route in all scenarios 

Table 13 - 14 illustrate the developments of the final and primary energy intensities. The Learning 
scenario provides the lowest energy intensity levels in all periods. Final energy intensity of the U.S. 
iron and steel sector decreases from10.7 GJ/tonne steel in 2010 to 6.4 GJ/tonne steel in the Baseline 
scenario and 6 GJ/tonne steel in the Learning scenario in 2050.  

 
 
 
 
Table 13 Final energy intensity of the U.S. iron and steel sector projected in the scenarios 
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(GJ/tonne steel) 
 2010 2015 2020 2025 2030 2035 2040 2045 2050 
Frozen 10.66 9.32 8.70 8.07 7.45 6.83 6.83 6.83 6.83 
Baseline 10.66 9.22 8.47 7.78 7.11 6.45 6.43 6.40 6.38 
Learning 10.66 9.03 8.22 7.49 6.65 6.16 6.04 6.01 5.99 

Table 14 Primary energy intensity of the U.S. iron and steel sector projected in the scenarios 
(GJ/tonne steel) 
 2010 2015 2020 2025 2030 2035 2040 2045 2050 
Frozen 14.85 12.77 12.22 11.66 11.10 10.55 10.55 10.55 10.55 
Baseline 14.85 12.67 11.87 11.19 10.54 9.90 9.83 9.77 9.75 
Learning 14.85 12.48 11.61 10.90 10.08 9.61 9.44 9.38 9.35 

Costs 

Table 15 summarizes the costs of average steel production through the years in each scenario. As 
mentioned above, most of the existing EE technologies are cost effective under the cost minimization 
objective of the ISEEM-USIS model. Increasing penetration of those cost effective technologies in the 
Baseline scenario decreases the total production cost of steel 2005 $0.7B in 2030 and 2005 $1.4B in 
2050, compared to the Frozen scenario, even though there is no learning impact on prices associated 
with efficient technologies. In the Learning scenario, total steel production cost decreases even more 
(e.g., 2005 $1.4B in 2030 and 2005 $2.1B in 2050) due the effect of learning on technology prices. 
Table 1 provides the development of average steel production cost (i.e., $ per tonne steel) between 
2010 and 2050 in all scenarios. 

Table 15 Average steel production cost in the U.S. iron and steel sector in scenarios (2005 $/tonne 
steel) 

 
2010 2015 2020 2025 2030 2035 2040 2045 2050 

Frozen 509.5 607.5 658.0 699.8 692.5 657.5 623.5 624.6 618.2 
Baseline 509.5 614.0 654.9 694.2 684.4 647.1 612.1 611.2 603.0 
Learning 509.5 611.6 651.3 689.6 676.4 642.4 604.4 603.0 595.0 
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CO2 Emissions 

In the Frozen scenario, CO2 emissions decrease until 2035, in which BOF production reaches to 
the lower bound set in the model assumptions. After that year onward, emissions pretty much 
stabilize and reach a level of approx. 56.3 billion tonnes of CO2 (Figure 19). BOF production route 
is highly emission intensive compared to the EAF production route.   

In the Baseline and Learning scenarios, CO2 emissions are 5.7% and 27.4% lower in 2050, 
compared to the Reference scenario. The major reason for this drastic reduction in the LR scenario 
is the lower demand for coking coal and coke, and so for coke production. A large share of coke 
used in the blast furnaces is replaced with pulverized coal. In addition, implementation of more 
efficient coke production technology (SCOPE21), compared to the old technology, after 2030 
significantly decreases the coking coal consumption.  

 
Figure 19 Annual total CO2 emission in the U.S. iron and steel sector 
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Chapter 5 Conclusions and Discussions  

The overall goal of this study was to analyze the learning effect on cost developments and 
technological progress of EE technologies in the U.S. iron and steel sector in the long term. Based 
on our findings on learning rates by analyzing historical data, we calculated average learning rates 
by technology penetration level.  

The investigation was carried out using ISEEM, a technology oriented, linear optimization model 
for the U.S. iron and steel sector. In this study, the ISEEM model was run in an iterative fashion in 
combination with a learning curve function. The model, as a consequence of its structure, produces 
results favoring low-cost production processes, unless there are constraints limiting their activities. 
We conclude from our analysis that, most of the existing EE technologies that are currently in use 
in the U.S. iron and steel sector are cost effective for the cost minimization objective (i.e., reducing 
the cost minimization objective) and, thus, the model has a tendency towards increasing 
penetration of them, even in the absence of price reductions. However, demonstration (or 
emerging) technologies, which represent the technologies without a significant production history, 
are generally not yet economically feasible in the U.S. iron and steel sector. In contrast, adoption is 
forecast for some of these in the long term and their penetration levels increase as prices go down 
with experience. We also observe a large penetration of 225 kg pulverized coal injection, which is 
one of the most expensive existing EE injection methodology to blast furnaces, with the presence 
of learning. 

The model results indicate that the energy consumption and CO2 emissions will decline with 
technology learning. For example, primary energy consumption of the U.S. iron and steel sector 
decreases from 1195PJ in 2010 to 867PJ in the Baseline scenario (with no learning) and 831PJ in 
the Learning scenario (where learning is adopted) in 2050 (compared to 938PJ in Frozen scenario, 
in which penetration of EE technologies are constant with no learning). In addition, an increasing 
penetration of cost effective EE technologies in the Baseline scenario results lowers average steel 
production cost by $15/tonne steel compared to the Frozen scenario in 2050. With technology 
learning in the Learning scenario, average steel production cost decreases by an additional of 
$8/tonne steel (total of $23/tonne steel compared to Frozen scenario) in 2050. 

Implementation of technology learning in the ISEEM modeling shows how early introduction of 
some demonstration technologies can accelerate their adoption as costs decline, compared to the 
exogenous cost projections (constant cost over time in this case). 

Although the integration of learning curve with ISEEM show improvement in the results, it is 
important to be aware of limitations with the model to be considered in future research, 

• Under the learning conditions specified here, by the end of the time horizon (i.e., 2050) the 
retrofit costs of some of the technologies have reached fairly low values. For example, 
PCI225 in this scenario have reached US$1.6/GJ tech. activity (from US$9.4/GJ tech. 
activity in 2010) (see Figure 21) with a constant LR of 0.06. This behavior may raise the 
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question of whether the cost reduction of some learning technologies should be limited, for 
instance providing a lower bound (i.e., floor-cost) for the unit retrofit cost, in order to avoid 
excessive cost reductions. In the literature, different criteria have been applied to handle 
this situation. Messner (1997) and Seebregts et al. (1999) imposed a lower bound for the 
specific cost of the learning technologies, while Mattsson (1997) decided to let the natural 
saturation of the learning curve to control the cost reduction without imposing any lower 
bounds. The lower bound, where possible, should be supported by studies of the cost 
structure and specific potential for cost reductions in the different components, since it is 
tied to the expectations of the modeler as to what constitutes a "reasonable" limit value.  

 
Figure 20 Evolution of unit retrofit cost of PCI225 with constant LR of 0.06 

• Similarly, some studies in the literature (e.g., Seebregts et al. 1999) limit the penetration of 
technologies under learning with a maximum installed capacity parameter. Due to the 
nature of cost minimization objective, penetration of a specific technology may jump to 
full penetration from a very low penetration level in a very short period of time (See Table 
9 for examples).  

• The data that we used to calculate technology specific learning rates is subject to 
uncertainty. Not only the learning rate itself is uncertain, it is also uncertain if it will retain 
the same level over the entire planning horizon considered or if they might decline.  In this 
study, as mentioned before we assume that reduction of cost via learning slows down in 
time with 1% decrease of LR every year starting from the first year in which the learning is 
applied.  

 

 

Table 16 Development of specific retrofit cost of PCI225 with constant ad slowing down LR 
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(2005 $/GJ technology activity)  
Constant LR 
(0.05) 201.0 43.0 9.43 

        
2.72  

          
2.52  

          
2.41  

          
2.30  

          
2.26  

          
2.22  

          
2.19  

          
2.16  

Slowing LR 
(1% per year) 201.0 43.0 9.43 2.72 2.70 2.67 2.66 2.63 2.62 2.61 2.61 

• Technology learning is restricted to retrofit cost only; other technology attributes like 
O&M costs and efficiency remain exogenous (constant in this case). 
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Appendix A. Learning rates from literature  

Table A 1 Learning rates for some energy technologies (Source: Kahouli-Brahmi, 2008) 
Baselines Energy 

technology 
Dependent 
variable 

Independent 
variable 

Country Time 
period 

Estimated 
learning 
rate (%) 

Fisher (1974) Electric power 
production 

Sale price 
($/kWh) 

Cumulative 
production 
($/kWh) 

US 1926–
1970 

25 

Fisher (1974) Coal for electric 
utilities 

Sale price to 
utility ($/ton) 

Cumulative 
production ($/ton) 

US 1948–
1969 

25 

Fisher (1974) Crude oil Sale price 
($/bbl) 

Cumulative 
production ($/bbl) 

US 1869–
1971 

5 

Fisher (1974) Retail gasoline 
processing 

Production 
cost ($/bbl) 

Cumulative 
production ($/bbl) 

US 1919–
1969 

20 

Maycock and 
Wakefield (1975) 

Solar 
Photovoltaic 
panels 

Sale price 
($/kW peak) 

Cumulative 
installed capacity 
(MW) 

US 1959–
1974 

22 

Jaskow and Rose 
(1985) 

Coal power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(units) 

US 1960–
1980 

1–6.4 

Jaskow and Rose 
(1985) 

Supercritical 
coal 

Production 
cost ($/kWh) 

Cumulative 
production (TWh) 

US N/A 3 

MacGregor et al. 
(1991) 

Gas turbines Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

N/A 1958–
1963 

22 

MacGregor et al. 
(1991) 

Gas turbines Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

N/A 1963–
1980 

9.9 

MacGregor et al. 
(1991) 

Gas turbines Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

N/A 1958–
1980 

13 

Williams and 
Terzian (1993) 

Solar 
Photovoltaic 
modules 

Sale price 
($/Wpeak) 

Cumulative sales 
(MW) 

Global 1976–
1992 

18 

Lund (1995) Wind Investment 
cost (€/kW) 

Cumulative 
installed capacity 
(kW) 

Denmark N/A 15 

Dannemand 
Andersen and 
Fuglsang (1996) 

Wind Sale price 
(€/kWh) 

Cumulative 
installed capacity 
(kW) 

Denmark 1981–
1995 

20 

Goldemberg (1996) Ethanol Sale price 
($/bbl) 

Cumulative 
production 
(million m3) 

Brazil 1979–
1995 

20 

Loiter and 
Norberg-Bohm 
(1999) CEC (1997) 

Wind electricity Production 
cost ($/kW) 

Cumulative 
production (TWh) 

California 1980–
1994 

20 

Neij (1997) Solar 
photovoltaic 
modules 

List prices 
($/kWh) 

Cumulative sales 
(MW) 

Denmark 1982–
1997 

20 

Neij (1997) Wind turbines List prices 
($/kWh) 

Cumulative sales 
(MW) 

Denmark 1982–
1995 

4 

Mackay and 
Probert (1998) 

Wind turbines Capital cost 
(US$/kWh) 

Cumulative sales 
(MW) 

US 1981–
1996 

14.3 

Mackay and Solar Prices Cumulative US 1976– 18 

46 

 

 



 

Probert (1998) photovoltaic 
modules 

(US$/Wp) installed capacity 
(MWp) 

1995 

Nitsch/ EU-ATLAS 
project (1998) 

Solar 
photovoltaic 
modules 

Sale price 
($/Wpeak) 

Cumulative 
production (MW) 

EU 1976–
1996 

21 

Nakicenovic et al. 
(1998) 

Gas turbines Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

N/A 1958–
1980 

13 

Neij (1999) Wind turbines List prices 
($/kW) 

Cumulative sales 
(MW) 

Denmark 1982–
1997 

6 and 4 

Durstewitz and 
Hoppe-Kilpper 
(1999) 

Wind Prices ($/kW) Cumulative 
installed capacity 
(MW) 

Germany 1990–
1998 

8 

Zhao (1999) Gas pipelines 
onshore 

Price ($/mile-
inch2) 

Cumulative 
installed capacity 
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US 1984–
1997 

3.7 

Zhao (1999) Gas pipelines 
offshore 

Price ($/mile-
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Cumulative 
installed capacity 
(mile-inch2) 

US 1984–
1997 

24 

Rabitsch (1999) DC converters Conversion 
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Cumulative 
installed capacity 
(installed units) 

Global 1976–
1994 

37 

Claeson (1999) GTCC power 
plants 

Prices ($/kW) Cumulative 
installed capacity 
(MW) 

Global 1981–
1991 

−11 

Claeson (1999) GTCC power 
plants 

Prices ($/kW) Cumulative 
installed capacity 
(MW) 

Global 1991–
1997 

26 

Claeson (1999) GTCC power 
plants 

Production 
cost ($/kWh) 

Cumulative 
production (TWh) 

EU N/A 4 

Harmon (2000) Solar 
photovoltaic 
modules 

Prices 
($/kWpeak) 

Cumulative 
installed capacity 
(MW) 

Global 1968–
1998 

20.2 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 
2000b 

Wind power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1981–
1995 

17 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 
2000b 

Nuclear power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1975–
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5.8 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 
2000b 

Hydropower 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1975–
1993 

1.4 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 
2000b 

Coal power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1975–
1993 

7.6 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 
2000b 

Lignite power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1975–
1992 

8.6 

Kouvaritakis et al. 
2000a and 
Kouvaritakis et al. 

GTCC power 
plants 

Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

OECD 1984–
1994 
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Wene (2000) Wind power Production 

cost ($/kWh) 
Cumulative 
production (TWh) 

US 1985–
1994 

32 

Wene (2000) Wind power Production 
cost 
(ECU/kWh) 

Cumulative 
production (TWh) 

EU 1980–
1995 

18 

Wene (2000) Photovoltaic Production 
cost 
(ECU/kWh) 

Cumulative 
production (TWh) 

EU 1985–
1995 

35 

Wene (2000) Electricity from 
biomass 

Production 
cost ($/kWh) 

Cumulative 
production (TWh) 

EU 1980–
1995 

15 

Wene (2000) Supercritical 
coal 

Production 
cost ($/kWh) 

Cumulative 
production (TWh) 

US N/A 3 

Wene (2000) GTCC Production 
cost ($/kWh) 

Cumulative 
production (TWh) 

EU N/A 4 

Wene (2000) Ethanol Sale price 
($/bbl) 

Cumulative 
production 
(million/m3) 

Brazil 1978–
1995 

22 

Isoard and Soria 
(2001) 

Solar 
photovoltaic 
modules 

Capital cost 
($/kW) 

Cumulative 
installed capacity 
(MW) 

EU 1976–
1994 

27.8 

Isoard and Soria 
(2001) 

Wind Capital cost 
($/kW) 

Cumulative 
installed capacity 
(MW) 

EU 1981–
1995 

17.06 

Milborrow (2002) Wind Investment 
cost (€/kW) 

Cumulative 
installed capacity 
(kW) 

Denmark N/A 15.3 

Ibenholt (2002) Wind electricity Production 
cost 
(Euro/kWh) 

Cumulative 
installed capacity 
(MW) 

Germany 1991–
1999 

(−3)–8 

Ibenholt (2002) Wind electricity Production 
cost 
(Euro/kWh) 

Cumulative 
installed capacity 
(MW) 

Denmark 1988–
1999 

7 

Ibenholt (2002) Wind electricity Production 
cost 
(Euro/kWh) 

Cumulative 
installed capacity 
(MW) 

Denmark 1984–
1988 

12 

Ibenholt (2002) Wind electricity Production 
cost 
(Euro/kWh) 

Cumulative 
installed capacity 
(MW) 

UK 1991–
1999 

15 

Neij et al (2003) Wind turbines Price of wind 
turbines 
(EUR/kWh) 

Cumulative 
produced capacity 
(MW) 

Denmark 
Germany 
Spain and 
Sweden 

1981–
2000 

6–8 

Neij et al (2003) Wind turbines Total 
installation 
costs 
(EUR/kWh) 

Cumulative 
installed capacity 
(MW) 

Denmark 
Germany 
Spain and 
Sweden 

1981–
2000 

4–11 

Neij et al (2003) Wind electricity Production 
cost (MW) 

Cumulative 
produced capacity 
(MW) 

Denmark 
Germany 
Spain and 
Sweden 

1981–
2000 

12–14 

Neij et al (2003) Wind electricity Production 
cost 
(EUR/kWh) 

Cumulative 
produced capacity 
(MW) 

Denmark 
Germany 
Spain and 
Sweden 

1981–
2000 

17 
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Neij et al (2003) Wind turbines Price of wind 
turbines 
(EUR/kWh) 

Cumulative 
installed capacity 
(MW) 

Denmark 
Germany 
Spain and 
Sweden 

1981–
2000 

(−17)–11 

Klaassen et al. 
(2005) 

Wind turbines Investment 
cost ($/kW) 

Cumulative 
installed capacity 
(MW) 

Denmark 
Germany and 
UK 

1986–
2000 

5.4 

Junginger et al. 
(2005) 

Wind turbines Investment 
cost (€/kW) 

Cumulative 
installed capacity 
(MW) 

Spanish 1990–
2001 

15 

Junginger et al. 
(2005) 

Wind turbines Investment 
cost (€/kW) 

Cumulative 
installed capacity 
(MW) 

UK 1992–
2001 

19 

Kobos et al. (2006) Wind Capital cost 
($/kW) 

Cumulative 
installed capacity 
(MW) 

US 1981–
1997 

14.2 

Kobos et al. (2006) Solar 
photovoltaic 

Capital cost 
($/kW) 

Cumulative 
installed capacity 
(MW) 

US 1975–
2000 

18.4 

Coulomb and 
Neuhoff (2006) 

Wind turbines German 
prices (€/kW) 

Global cumulative 
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(MW) 

Global 1991–
2003 

12.7 

Jamasb (2006) Pulverized fuel 
supercritical coal 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1990–
1998 

3.75 

Jamasb (2006) Coal 
conventional 
technology 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1980–
1998 

12.39 

Jamasb (2006) Lignite 
conventional 
technology 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1980–
2001 

5.67 

Jamasb (2006) Combined cycle 
gas turbine 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1980–
1989 

0.65 

Jamasb (2006) Combined cycle 
gas turbine 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1990–
1998 

2.2 

Jamasb (2006) Large 
hydropower 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1980–
2001 

1.96 

Jamasb (2006) Combined heat 
and power 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1980–
1998 

0.23 

Jamasb (2006) Small 
hydropower 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1988–
2001 

0.48 

Jamasb (2006) Nuclear power 
(light water 
reactor) 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1989–
1998 

36.3 

Jamasb (2006) Waste to 
electricity 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1990–
1998 

41.5 

Jamasb (2006) Wind energy—
one shore 

Investment 
cost ($99/kW) 

Cumulative 
installed capacity 
(MW) 

Global 1994–
2001 

13.1 

Jamasb (2006) Solar power— Investment Cumulative Global 1985– 2.2 
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Investment 
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(MW) 
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1 
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Appendix B. Existing Energy Efficient Technologies Analyzed in the Study 

Table B 1 Characteristics of 75 Energy Efficient Technologies Analyzed in the Study 

  

Applied Fuel 
Savings 
(GJ/tonne 
crude steel) 

Applied Total 
Retrofit Costs 
in 1994 (2005 
US$/tonne 
crude steel) 

Applied Total 
Retrofit Costs 
in 2002 (2005 
US$/tonne 
crude steel) 

Applied Annual 
Operating Cost 
Change (2005 
US$/tonne crude 
steel) 

Lifetime of 
Measure 

Share of total 
U.S. Production 
to which 
Measure is 
Applied/ 
Broken by 
BOF/EAF 

Secondary Steelmaking 

Steelmaking Electric Arc Furnace 

Improved process control (neural network) 0 1.25 0.73 -0.552 10 90% 

Fluegas Monitoring and Control 0.003 2.64 1.09 -0.524 15 51% 

Transformer efficiency - UHP transformers 0 3.62 1.19 0 15 34% 

Bottom Stirring / Stirring gas injection 0 0.79 0.08 -0.135 0.5 11% 

Foamy slag 0 13.18 4.34 -0.221 10 20% 

Oxy-fuel burners  -0.05 6.32 1.45 -0.342 10 31% 

Eccentric Bottom Tapping (EBT) on existing furnace 0 4.22 1.42 0 20 5% 

DC-Arc furnace 0 5.14 0.42 -0.306 30 20% 

FUCHS Shaft furnace -0.086 7.91 2.28 -0.858 30 34% 

Twin Shell w/ scrap preheating 0 7.91 0.98 -0.067 30 10% 
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Siemens EAF Quantum with scrap preheating -0.064   1.05 (available 
in 2010) -0.536 30 34% 

Recover heat from waste gas 0.025   0.78 (available 
in 2010) -0.098 10 80% 

Post combustion of CO gas 0   0.92 (available 
in 2010) -0.441 10 80% 

Increased usage of hot metal 0   0.41 (available 
in 2010) -0.092 10 10% 

Secondary Casting 

Efficient ladle preheating 0.005 0.07 0.04 0 10 100% 

Proper sealing on ladle furnace preheating 0.021   0.05 (available 
in 2010) 0 10 51% 

Near net shape casting/thin slab casting (TSC) 0.51 54.6 29.02 -5.574 20 26% 

Use dry rolls in tunnel ovens for TSC 0.076   0.71 (available 
in 2010) -0.002 20 26% 

Secondary Hot Rolling  

Process control in hot strip mill 0.106 0.8 0.49 0 10 64% 

Recuperative burners 0.247 2.87 1.23 0 10 64% 

Insulation of furnaces 0.033 11.5 2.93 0 10 29% 
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Ceramic wall in reheating furnace 0.106   0.63 (available 
in 2010) 0 10 64% 

Reduce losses from furnace door opening 0.005   0.06 (available 
in 2010) 0 10 64% 

Controlling oxygen levels and VSDs on combustion air 
fans 0.008 0.58 0.25 0 15 51% 

Energy-efficient drives in the rolling mill 0 0.22 0.1 0 20 90% 

Waste heat recovery from cooling water 0.014 0.92 0.56 0.025 15 64% 

General Technologies  

Preventative Maintenance 0.129 0.01 0.01 0.012 20 100% 

Optimizing the steam system 0.086   0.55 (available 
in 2010) 0 20 51% 

Increase efficiency of boilers 0.006   0.09 (available 
in 2010) 0 20 51% 

Optimizing the air system 0   0.09 (available 
in 2010) 0 20 100% 

Variable speed drive: flue gas control, pumps, fans 0 1.71 0.18 (available 
in 2010) 0 5 51% 

Energy monitoring and management system 0.023 0.2 0.15 0 5 90% 

    

Integrated Steelmaking 

Iron Ore Preparation (Sintering)  
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Sinter plant heat recovery 0.035 0.87 0.64 0 10 101% 

Reduction of air leakages 0 0.03 0.02 -0.006 10 101% 

Increasing bed depth 0.005 0 0 0 10 90% 

Improved process control (sinter plant) 0.002 0.04 0.03 -0.013 10 90% 

Use of waste fuels in the sinter plant 0.001 0.05 0.03 0 10 10% 

Improved charging method 0.005   0.055 (available 
in 2008) -0.006 10 90% 

Coke Making  

Coal moisture control 0.021 19.35 12.12 0 10 90% 

Programmed heating - coke plant 0.018 0.09 0.05 0 10 90% 

Variable speed drive coke oven gas compressors 0.001 0.12 0.08 0 15 90% 

Coke dry quenching 0.152 27.65 17.31 -0.724 18 90% 

Iron Making (Blast Furnace)  

Pulverized coal injection to 130 kg/thm 0.054 8.22 2.67 -0.14 20 21% 

Pulverized coal injection to 225 kg/thm 0.049 6.11 4.62 -0.073 20 26% 

Injection of natural gas to 140 kg/thm 0.06 5.88 2.35 -0.153 20 21% 

Injection of oil up to 130 kg/thm 0.057 6.41 (available 
in 1998) 2.3 -0.133 20 21% 

Top pressure recovery turbines (wet type) 0 23.5 14.31 0 15 80% 
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Recovery of blast furnace gas 0.007 0.36 0.09 0 15 31% 

Hot blast stove automation 0.074 0.36 0.17 0 5 59% 

Recuperator hot blast stove 0.027 1.65 1.35 0 10 101% 

Improved blast furnace control systems 0.111 0.42 0.28 0 5 83% 
Source: Karali et al., 2013; Worrell et al., 1999 

Table B 2 Learning rates for retrofit cost for the 75 technologies examined in this study 

  
Learning 
Rate 

 

Learning 
Rate 

Secondary Steelmaking  Integrated Steelmaking   
Steelmaking Electric Arc Furnace  Iron Ore Preparation (Sintering)    
Improved process control (neural network) 0.02 Sinter plant heat recovery 0.01 
Fluegas Monitoring and Control 0.04 Reduction of air leakages 0.01 
Transformer efficiency - UHP transformers 0.05 Increasing bed depth   
Bottom Stirring / Stirring gas injection 0.1 Improved process control (sinter plant) 0.01 
Foamy slag 0.05 Use of waste fuels in the sinter plant 0.02 
Oxy-fuel burners  0.06 Improved charging method 0.02 
Eccentric Bottom Tapping (EBT) on existing furnace 0.1 Coke Making    
DC-Arc furnace 0.1 Coal moisture control 0.02 
FUCHS Shaft furnace 0.05 Programmed heating - coke plant 0.02 
Twin Shell w/ scrap preheating 0.09 Variable speed drive coke oven gas compressors 0.02 
Siemens EAF Quantum with scrap preheating 0.06 Coke dry quenching 0.02 
Recover heat from waste gas 0.02 Iron Making (Blast Furnace)    
Post combustion of CO gas 0.02 Pulverized coal injection to 130 kg/thm 0.06 
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Increased usage of hot metal 0.1 Pulverized coal injection to 225 kg/thm 0.06 
Secondary Casting   Injection of natural gas to 140 kg/thm 0.06 
Efficient ladle preheating 0.02 Injection of oil up to 130 kg/thm 0.06 
Proper sealing on ladle furnace preheating 0.03 Top pressure recovery turbines (wet type) 0.06 
Near net shape casting/thin slab casting (TSC) 0.06 Recovery of blast furnace gas 0.06 
Use dry rolls in tunnel ovens for TSC 0.06 Hot blast stove automation 0.03 
Secondary Hot Rolling    Recuperator hot blast stove 0.01 
Process control in hot strip mill 0.03 Improved blast furnace control systems 0.02 
Recuperative burners 0.03 Steelmaking   
Insulation of furnaces 0.05 Basic Oxygen Furnace    
Ceramic wall in reheating furnace 0.03 BOF gas + sensible heat recovery 0.01 
Reduce losses from furnace door opening 0.03 Variable speed drive on ventilation fans 0.01 
Controlling oxygen levels and VSDs on combustion air fans 0.03 Integrated Casting    
Energy-efficient drives in the rolling mill 0.02 Efficient ladle preheating 0.03 
Waste heat recovery from cooling water 0.02 Proper sealing on ladle furnace preheating 0.03 
General Technologies    Thin slab casting 0.06 
Preventative Maintenance 0.01 Use dry rolls in tunnel ovens for TSC 0.06 
Optimizing the steam system 0.03 Integrated Hot Rolling    
Increase efficiency of boilers 0.03 Hot charging 0.05 
Optimizing the air system 0.02 Process control in hot strip mill 0.03 
Variable speed drive: flue gas control, pumps, fans 0.03 Recuperative burners 0.05 
Energy monitoring and management system 0.01 Insulation of furnaces 0.05 

  
Ceramic wall in reheating furnace 0.03 

  
Reduce losses from furnace door opening 0.03 
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Controlling oxygen levels and VSDs on 
combustion air fans 0.03 

  
Energy-efficient drives in the rolling mill 0.04 

  
Waste heat recovery from cooling water 0.03 

  
Integrated Cold Rolling and Finishing    

  
Heat recovery on the annealing line 0.02 

  
Reduced steam use in the pickling line 0.01 

  
Automated monitoring and targeting system 0.03 

  
General    

  
Preventative Maintenance 0.01 

  
Optimizing the steam system 0.02 

  
Increase efficiency of boilers 0.02 

  
Optimizing the air system 0.02 

  
Energy monitoring and management system 0.02 

  
Variable speed drive: flue gas control, pumps, fans 0.03 
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Table B 3 Demonstration technologies considered in this study 
Sintering Selective Waste Gas Recycling - EPOSINT Process (SIN-SWGR) 

Coke making 
Automation and Process Control System (COK-APCS) 
Non-Recovery Coke Ovens (COK-NRCO) 
Advanced coke oven (SCOPE21) 

BF Additional Use of Coke Oven Gas (BF-AUCOG) 
Blast Furnace Heat Recuperation (BF-HR) 

BOF 
Aluminum Bronze Alloy to Improve Hood, Roof and Sidewall Life (BOF-ABA) 
Blast Furnace Slag Heat Recovery (BOF-SHR) 
In-Situ Real-Time Measurement of Melt Constituents -BOF (BOF-ISRT) 

EAF Aluminum Bronze Alloy to Improve Hood, Roof and Sidewall Life (EAF-ABA) 
In-Situ Real-Time Measurement of Melt Constituents -EAF (EAF-ISRT) 

Source: Hasanbeigi et al., 2013; Worrell et al., 2010; IPPC, 2011 

 

58 

 

 


	BERKELEY NATIONAL LABORATORY
	Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry
	International Energy Studies Group,
	Energy Analysis and Environmental Impacts Division,
	Lawrence Berkeley National Laboratory
	Contents
	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Abstract
	Chapter 1 Introduction
	Chapter 2 Learning Curve Approach
	2.
	2.1. Learning curve literature
	2.2. The learning curve formula
	2.3. Learning curve criticisms
	2.4. Using learning curves in energy models
	2.5. Using learning Curves for the U.S. Iron and Steel Sector

	Chapter 3 Technological learning in ISEEM
	Chapter 4  ISEEM-U.S. iron and steel sector (ISEEM-USIS) model
	4.1. Calibration and General Assumptions
	4.2. Scenarios
	4.3. Results

	Chapter 5 Conclusions and Discussions
	Acknowledgments
	References
	Appendix A. Learning rates from literature
	Appendix B. Existing Energy Efficient Technologies Analyzed in the Study

